Corollary. For every graph G the following hold:

- There is always a vertex of degree at least $\lfloor \frac{2m}{n} \rfloor$.
- There is always a vertex of degree at most $\left\lceil \frac{2m}{n} \right\rceil$.

There's always more to say...

Theorem (Erdős-Gallai). Let $d_1 \ge d_2 \ge ... \ge d_n$ be a sequence of integers.

- 1. If we allow loops and parallel edges, then there exists a graph with degree sequence $(d_1, d_2, ..., d_n)$ if and only if $d_1 + d_2 + ... + d_n$ is even.
- 2. If we allow parallel edges, then there exists a graph with degree sequence $(d_1, ..., d_n)$ if and only if $d_1 + ... + d_n$ is even and $d_1 \leq d_2 + ... + d_n$.
- 3. There exists a graph with degree sequence $(d_1, ..., d_n)$ if and only if $d_1 + ... + d_n$ is even and for each $1 \le k \le n$ we have that $d_1 + ... + d_k \le k(k-1) + min(d_{k+1}, k) + ... + min(d_n, k)$.