Corollary. For every graph G the following hold:

- There is always a vertex of degree at least $\left\lfloor\frac{2 m}{n}\right\rfloor$.
- There is always a vertex of degree at most $\left\lceil\frac{2 m}{n}\right\rceil$.

There's always more to say...

Theorem (Erdős-Gallai). Let $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ be a sequence of integers.

1. If we allow loops and parallel edges, then there exists a graph with degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ if and only if $d_{1}+d_{2}+\ldots+d_{n}$ is even.
2. If we allow parallel edges, then there exists a graph with degree sequence $\left(d_{1}, \ldots, d_{n}\right)$ if and only if $d_{1}+\ldots+d_{n}$ is even and $d_{1} \leq d_{2}+\ldots+d_{n}$.
3. There exists a graph with degree sequence $\left(d_{1}, \ldots, d_{n}\right)$ if and only if $d_{1}+$ $\ldots+d_{n}$ is even and for each $1 \leq k \leq n$ we have that $d_{1}+\ldots+d_{k} \leq$ $k(k-1)+\min \left(d_{k+1}, k\right)+\ldots+\min \left(d_{n}, k\right)$.
